3(y^2+3)=28

Simple and best practice solution for 3(y^2+3)=28 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3(y^2+3)=28 equation:



3(y^2+3)=28
We move all terms to the left:
3(y^2+3)-(28)=0
We multiply parentheses
3y^2+9-28=0
We add all the numbers together, and all the variables
3y^2-19=0
a = 3; b = 0; c = -19;
Δ = b2-4ac
Δ = 02-4·3·(-19)
Δ = 228
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{228}=\sqrt{4*57}=\sqrt{4}*\sqrt{57}=2\sqrt{57}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{57}}{2*3}=\frac{0-2\sqrt{57}}{6} =-\frac{2\sqrt{57}}{6} =-\frac{\sqrt{57}}{3} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{57}}{2*3}=\frac{0+2\sqrt{57}}{6} =\frac{2\sqrt{57}}{6} =\frac{\sqrt{57}}{3} $

See similar equations:

| 4y=(10)+16 | | 53/4+x=91/6 | | 3(y2+3)=28 | | 2/3(6x-9)=4x | | 20/3x+1=6/5 | | 8=2n=6n | | 1/x+5=2/3 | | 5x-8=5(x+8) | | (6x+7)+(12x-3=112 | | 10/3=20/3x+2 | | -84=-7(-2a-2) | | 2(m+6)=16 | | x^2+12x+0=108 | | |x+8|=2x+3 | | 108=x^2+12x | | 4x-9x=-5x+5 | | 2x^2-6x^2-1=0 | | x^2+12x=108 | | 20=-1/4x-8 | | x-3/x-6=4/10 | | 4y=(16)+-4 | | 9-8p+4=41 | | 4y=(-10)-4 | | 2(3x+6=42 | | (2a+3)-(4a-8)=a-16 | | 4y=(10)-4 | | 3b-4-6b-7=3b-6b-4-7 | | y+3-6y=-4(y-3) | | x-4/2=4x-9/3 | | -34-11y+19=-33y+57+13y | | 6=3/4h | | 2w±10-8w=38 |

Equations solver categories